EE 330 Lecture 25

- Small Signal Analysis
- Small Signal Models for MOSFET and BJT

Fall 2025 Exam Schedule

Exam 1 Friday Sept 26

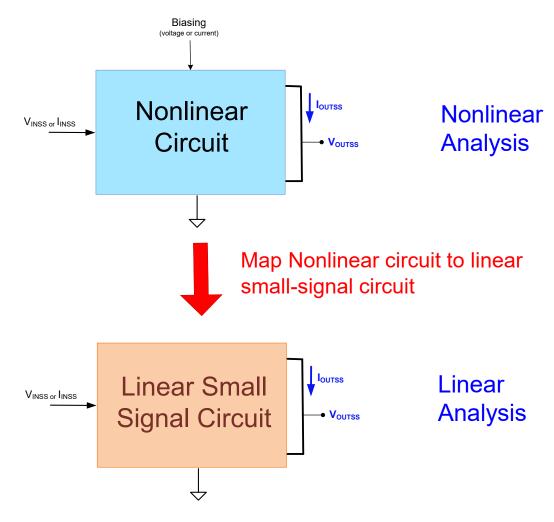
Exam 2 Friday October 24

Exam 3 Friday Nov 21

Final Exam Monday Dec 15 12:00 - 2:00 PM

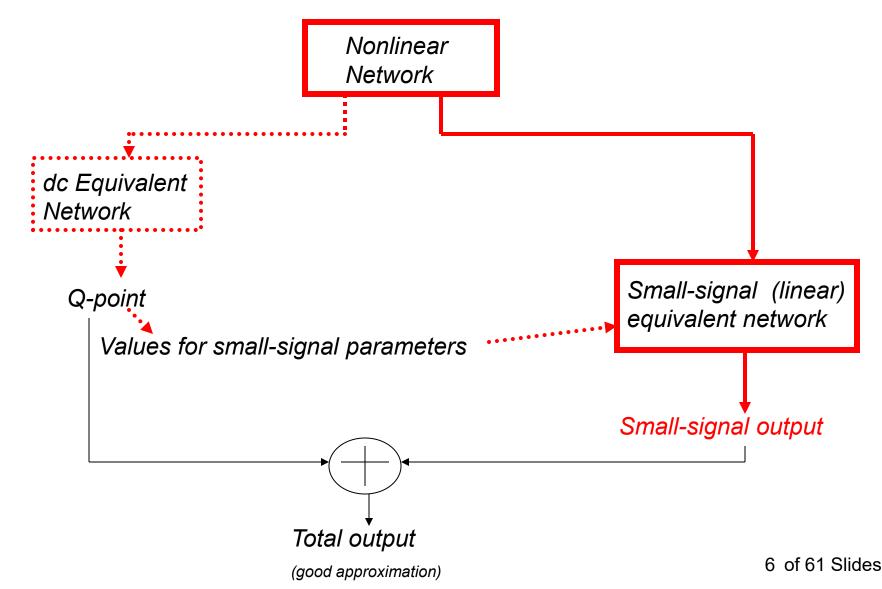
Review from Last Lecture

Small-Signal Analysis

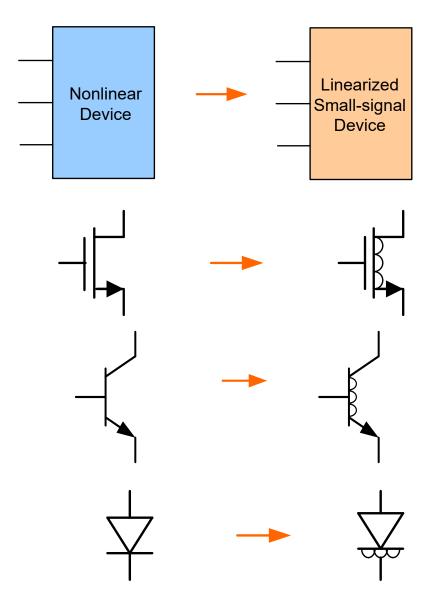


- Will commit next several lectures to developing this approach
- Analysis will be MUCH simpler, faster, and provide significantly more insight
- Applicable to many fields of engineering

"Alternative" Approach to small-signal analysis of nonlinear networks



Review from Last Lecture Linearized nonlinear devices



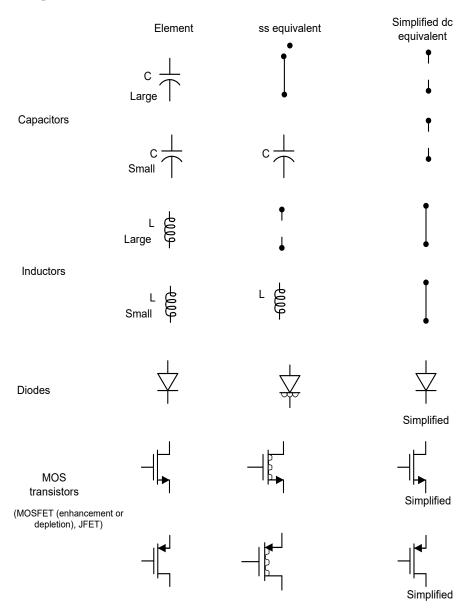
This terminology will be used in THIS course to emphasize difference between nonlinear model and linearized small signal model

Review from Last Lecture

Small-signal and simplified dc equivalent elements

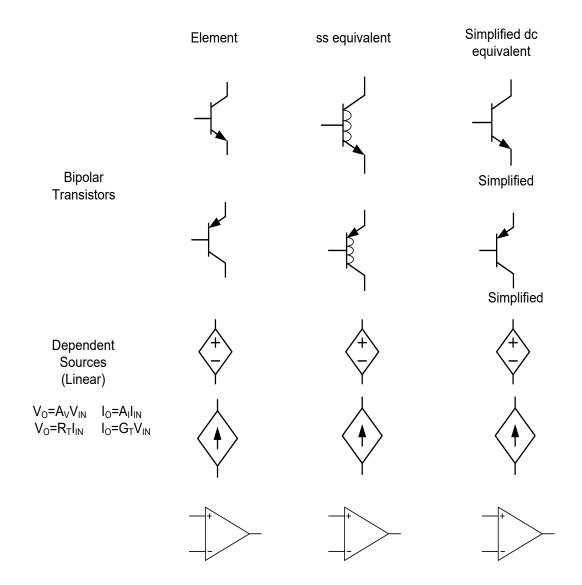
	Element	ss equivalent	Simplified dc equivalent
dc Voltage Source	V _{DC} $\frac{\bot}{\bot}$		V _{DC}
ac Voltage Source	V _{AC}	V _{AC} $\stackrel{+}{\longleftrightarrow}$	
dc Current Source	I _{DC}	† ↓	I _{DC}
ac Current Source	I _{AC}	I _{AC}	† •
Resistor	R 💺	R 💺	R →

Review from Last Lecture Small-signal and simplified dc equivalent elements



Review from Last Lecture

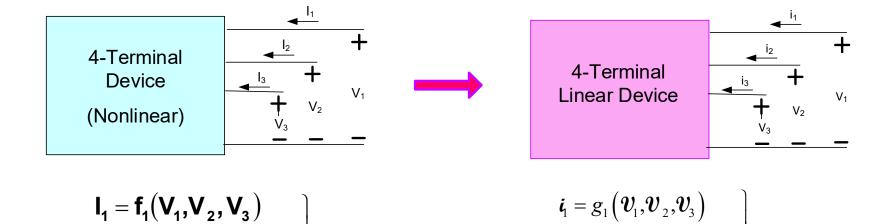
Small-signal and simplified dc equivalent elements



 $\mathbf{I_2} = \mathbf{f_2} (\mathbf{V_1}, \mathbf{V_2}, \mathbf{V_3})$

 $I_3 = f_3(V_1, V_2, V_3)$

Small-Signal Model of 4-Terminal Network



 $\mathbf{i}_2 = g_2 \left(\mathbf{V}_1, \mathbf{V}_2, \mathbf{V}_3 \right)$

 $i_3 = g_3(v_1, v_2, v_3)$

Mapping is unique (with same models)

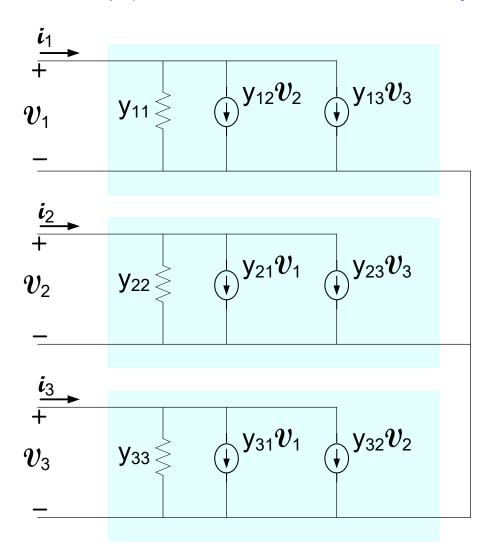
$$\mathbf{i}_{1} = y_{11}\mathbf{u}_{1} + y_{12}\mathbf{u}_{2} + y_{13}\mathbf{u}_{3}
\mathbf{i}_{2} = y_{21}\mathbf{u}_{1} + y_{22}\mathbf{u}_{2} + y_{23}\mathbf{u}_{3}
\mathbf{i}_{3} = y_{31}\mathbf{u}_{1} + y_{32}\mathbf{u}_{2} + y_{33}\mathbf{u}_{3}$$

$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i}(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3})}{\partial \mathbf{V}_{j}} \Big|_{\mathbf{V} = \mathbf{V}_{\mathbf{Q}}}$$

- This is a small-signal model of a 4-terminal network and it is linear
- 9 small-signal parameters characterize the linear 4-terminal network
- Small-signal model parameters dependent upon Q-point!
- Termed the y-parameter model or "admittance" –parameter model

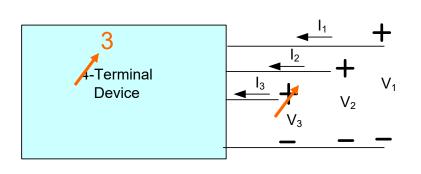
Review from Last Lecture

A small-signal equivalent circuit of a 4-terminal nonlinear network (equivalent circuit because has exactly the same port equations)



$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i}(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3})}{\partial \mathbf{V}_{j}} \bigg|_{\mathbf{V} = \mathbf{V}_{0}}$$

Equivalent circuit is not unique Equivalent circuit is a three-port network



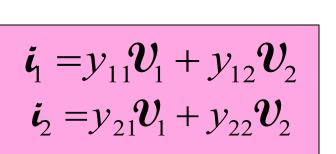
$$egin{aligned} \dot{m{u}}_1 &= g_1 ig(v_1, v_2, v_3 ig) \\ \dot{m{v}}_2 &= g_2 ig(v_1, v_2, v_3 ig) \\ \dot{m{v}}_3 &= g_3 ig(v_1, v_2, v_3 ig) \end{aligned}$$

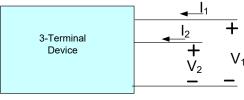
$$\mathbf{i}_{1} = y_{11}\mathbf{v}_{1} + y_{12}\mathbf{v}_{2} + y_{13}\mathbf{v}_{3}$$

$$\mathbf{i}_{2} = y_{21}\mathbf{v}_{1} + y_{22}\mathbf{v}_{2} + y_{23}\mathbf{v}_{3}$$

$$\mathbf{i}_{3} = y_{31}\mathbf{v}_{1} + y_{32}\mathbf{v}_{2} + y_{33}\mathbf{v}_{3}$$

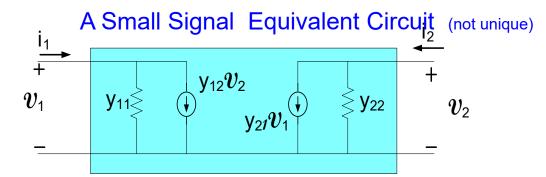
$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i}(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3})}{\partial \mathbf{V}_{j}} \bigg|_{\mathbf{V} = \mathbf{V}_{Q}}$$



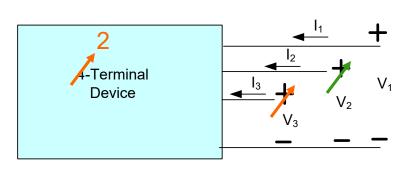


$$\mathbf{y}_{ij} = \frac{\partial f_i(\mathbf{V_1, V_2})}{\partial \mathbf{V_j}} \bigg|_{\vec{\mathbf{V}} = \vec{\mathbf{V}}_{\mathbf{Q}}}$$

$$\vec{\mathbf{V}} = \begin{pmatrix} \mathbf{V}_{1Q} \\ \mathbf{V}_{2Q} \end{pmatrix}$$



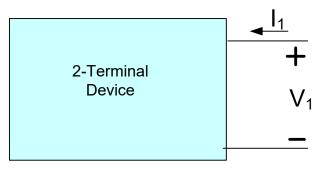
- Small-signal model is a "two-port"
- 4 small-signal parameters characterize this 3-terminal linear network
- Small signal parameters dependent upon Q-point



$$egin{aligned} \dot{u}_1 &= g_1 ig(v_1, v_2, v_3 ig) \\ \dot{v}_2 &= g_2 ig(v_1, v_2, v_3 ig) \\ \dot{v}_3 &= g_3 ig(v_1, v_2, v_3 ig) \end{aligned}$$

$$\mathbf{i}_{1} = y_{11}\mathbf{v}_{1} + y_{12}\mathbf{v}_{2} + y_{13}\mathbf{v}_{3}$$
 $\mathbf{i}_{2} = y_{21}\mathbf{v}_{1} + y_{22}\mathbf{v}_{2} + y_{23}\mathbf{v}_{3}$
 $\mathbf{i}_{3} = y_{31}\mathbf{v}_{1} + y_{32}\mathbf{v}_{2} + y_{33}\mathbf{v}_{3}$

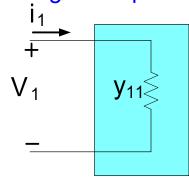
$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i}(\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{V}_{3})}{\partial \mathbf{V}_{j}}\bigg|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{0}}$$



$$\mathbf{i}_{1} = y_{11} \mathbf{v}_{1}$$

$$\mathbf{y}_{11} = \frac{\partial f_{1}(V_{1})}{\partial V_{1}}\bigg|_{\bar{V}=\bar{V}_{Q}} \qquad \vec{V} = V_{1Q}$$

A Small Signal Equivalent Circuit

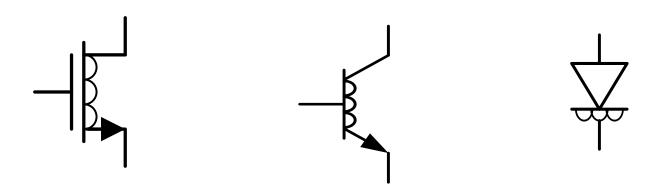


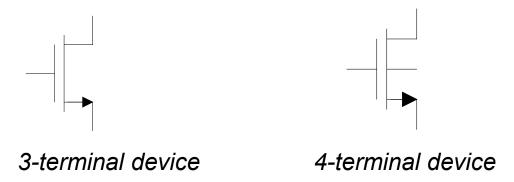
Small-signal model is a one-port

This was actually developed earlier!

How is the small-signal equivalent circuit obtained from the nonlinear circuit?

What is the small-signal equivalent of the MOSFET, BJT, and diode?

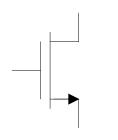




MOSFET is actually a 4-terminal device but for many applications acceptable predictions of performance can be obtained by treating it as a 3-terminal device by neglecting the bulk terminal

In this course, we have been treating it as a 3-terminal device and in this lecture will develop the small-signal model by treating it as a 3-terminal device

When treated as a 4-terminal device, the bulk voltage introduces one additional term to the small signal model which is often either negligibly small or has no effect on circuit performance (will develop 4-terminal ss model later)



Large Signal Model

$$I_{\rm g}=0$$

3-terminal device

Saturation

$$I_{_{D}} = \begin{cases} 0 & V_{_{GS}} \leq V_{_{T}} \\ \mu C_{_{OX}} \frac{W}{L} \left(V_{_{GS}} - V_{_{T}} - \frac{V_{_{DS}}}{2}\right) V_{_{DS}} & V_{_{GS}} \geq V_{_{T}} & V_{_{DS}} < V_{_{GS}} - V_{_{T}} \\ \mu C_{_{OX}} \frac{W}{2L} \left(V_{_{GS}} - V_{_{T}}\right)^{2} \left(1 + \lambda V_{_{DS}}\right) & V_{_{GS}} \geq V_{_{T}} & V_{_{DS}} \geq V_{_{GS}} - V_{_{T}} \end{cases}$$

$$V_{GS} \le V_{T}$$
 $V_{CS} \ge V_{T}$ $V_{DS} < V_{CS} - V_{T}$

$$V_{_{GS}} \ge V_{_{T}} \quad V_{_{DS}} \ge V_{_{GS}} - V_{_{T}}$$

MOSFET is usually operated in saturation region in linear applications where a small-signal model is needed so will develop the small-signal model in the saturation region

$$\begin{split} I_{_{1}} &= f_{_{1}} \left(V_{_{1}}, V_{_{2}} \right) & \iff & I_{_{G}} = 0 \\ I_{_{2}} &= f_{_{2}} \left(V_{_{1}}, V_{_{2}} \right) & \iff & I_{_{D}} = \mu C_{_{OX}} \frac{W}{2L} \left(V_{_{GS}} - V_{_{T}} \right)^{2} \left(1 + \lambda V_{_{DS}} \right) \\ I_{_{G}} &= f_{_{1}} \left(V_{_{GS}}, V_{_{DS}} \right) \\ I_{_{D}} &= f_{_{2}} \left(V_{_{GS}}, V_{_{DS}} \right) \end{split}$$

Small-signal model:

al model:
$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right)}{\partial \mathbf{V}_{j}} \Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$

$$\mathbf{y}_{11} = \frac{\partial \mathbf{I}_{G}}{\partial \mathbf{V}_{GS}} \Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$

$$\mathbf{y}_{12} = \frac{\partial \mathbf{I}_{G}}{\partial \mathbf{V}_{DS}} \Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$

$$\mathbf{y}_{21} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{DS}} \Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{Q}}$$

21 of 61 Slides

$$I_{\rm g}=0$$

$$I_{D} = \mu C_{OX} \frac{W}{2I} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

Small-signal model:

$$\mathbf{y}_{11} = \frac{\partial \mathbf{I}_{G}}{\partial \mathbf{V}_{GS}}\Big|_{\mathbf{V} = \mathbf{V}_{Q}} = ?$$

$$\mathbf{y}_{12} = \frac{\partial \mathbf{I}_{G}}{\partial \mathbf{V}_{DS}}\Big|_{\mathbf{V} = \mathbf{V}_{OS}} = \mathbf{?}$$

$$\mathbf{y}_{21} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{GS}}\Big|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{O}} = ?$$

$$\mathbf{y}_{22} = \frac{\partial \mathbf{I}_{D}}{\partial \mathbf{V}_{DS}}\Big|_{\mathbf{v} = \mathbf{v}_{DS}} = \mathbf{?}$$

Recall: termed the y-parameter model

$$I_{1} = f_{1}(V_{1}, V_{2}) \qquad \Longrightarrow \qquad I_{G} = 0$$

$$I_{2} = f_{2}(V_{1}, V_{2}) \qquad \Longleftrightarrow \qquad I_{D} = \mu C_{OX} \frac{W}{2I}(V_{GS} - V_{T})^{2}(1 + \lambda V_{DS})$$

Small-signal model:

$$\begin{aligned} y_{_{11}} &= \left. \frac{\partial I_{_{G}}}{\partial V_{_{GS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = 0 \\ y_{_{12}} &= \left. \frac{\partial I_{_{G}}}{\partial V_{_{DS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = 0 \\ y_{_{21}} &= \left. \frac{\partial I_{_{D}}}{\partial V_{_{GS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = 2\mu C_{_{ox}} \frac{W}{2L} (V_{_{GS}} - V_{_{T}})^{1} (1 + \lambda V_{_{DS}}) \Big|_{_{\bar{V} = \bar{V}_{_{Q}}}} = \mu C_{_{ox}} \frac{W}{L} (V_{_{GSQ}} - V_{_{T}}) (1 + \lambda V_{_{DSQ}}) \\ y_{_{21}} &\cong \left. \mu C_{_{ox}} \frac{W}{L} (V_{_{GSQ}} - V_{_{T}}) \right. \\ y_{_{22}} &= \left. \frac{\partial I_{_{D}}}{\partial V_{_{DS}}} \right|_{_{\bar{V} = \bar{V}_{_{Q}}}} = \mu C_{_{ox}} \frac{W}{2L} (V_{_{GS}} - V_{_{T}})^{2} \lambda \Big|_{_{\bar{V} = \bar{V}_{_{Q}}}} \cong \lambda I_{_{DQ}} \end{aligned}$$

Nonlinear model:

$$I_{\rm g}=0$$

$$I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2} (1 + \lambda V_{DS})$$

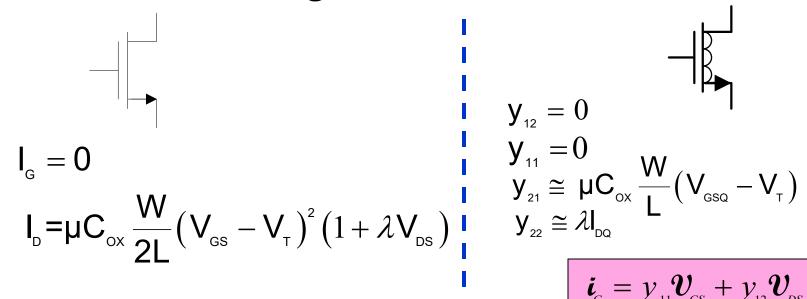
Small-signal model:

$$y_{11} = 0$$

$$y_{12} = 0$$

$$y_{21} \cong \mu C_{ox} \frac{W}{L} (V_{gsQ} - V_{T})$$

$$y_{22} \cong \lambda I_{DQ}$$

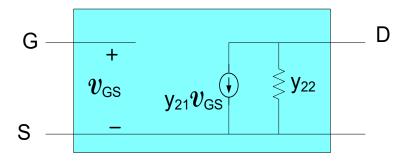


$$y_{12} = 0$$

$$y_{11} = 0$$

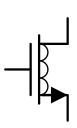
$$y_{21} \cong \mu C_{0x} \frac{W}{L} (V_{GSQ} - V_{T})$$

$$y_{22} \cong \lambda I_{DQ}$$



An equivalent circuit

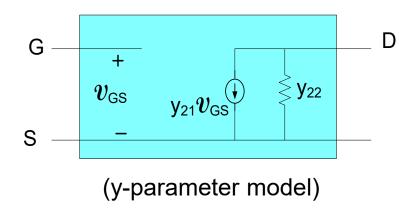
(y-parameter model) 1 Slides

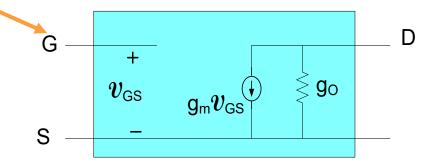


by convention, $y_{21}=g_m$, $y_{22}=g_0$

$$\therefore y_{21} \cong g_{m} = \mu C_{OX} \frac{W}{L} (V_{GSQ} - V_{T})$$

$$y_{22} = g_{O} \cong \lambda I_{DQ}$$





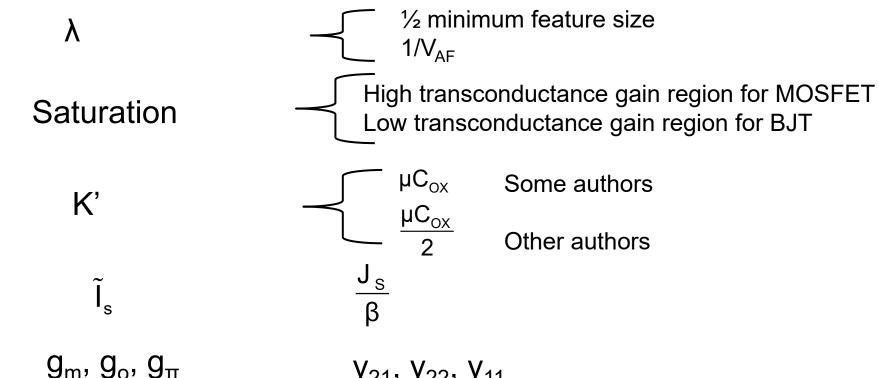
$$\mathbf{i}_{G} = 0
 \mathbf{i}_{D} = g_{m} \mathbf{V}_{GS} + g_{O} \mathbf{V}_{DS}$$

Note: g_o vanishes when $\lambda=0$

still y-parameter model but use "g" parameter hodel

Terminology in Microelectronics

Re-use/Duplication



 y_{21}, y_{22}, y_{11}

Disassociation

Dependent Source

Amplifier

Circuits Community

Electronics Community

27 of 61 Slides

Saturation Region Summary

Nonlinear model:

$$\begin{cases}
I_{g} = 0 \\
I_{D} = \mu C_{ox} \frac{W}{2L} (V_{gs} - V_{T})^{2} (1 + \lambda V_{DS})
\end{cases}$$

Small-signal model:

$$\mathbf{i}_{G} = y_{11} \mathbf{v}_{GS} + y_{12} \mathbf{v}_{DS} = 0$$

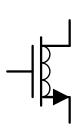
$$\mathbf{i}_{D} = y_{21} \mathbf{v}_{GS} + y_{22} \mathbf{v}_{DSE}$$

$$y_{11} = 0$$

$$\mathbf{y}_{21} = \mathbf{g}_{m} \cong \mu \mathbf{C}_{0x} \frac{\mathbf{W}}{\mathbf{I}} (\mathbf{V}_{GSQ} - \mathbf{V}_{T}) \qquad \mathbf{y}_{22} = \mathbf{g}_{0} \cong \lambda \mathbf{I}_{DQ}$$

$$y_{12} = 0$$

$$\mathbf{y}_{22} = \mathbf{g}_{0} \cong \lambda \mathbf{I}_{DC}$$



$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{GSQ} - V_{T})$$

Alternate equivalent expressions for g_m :

$$I_{\text{\tiny DQ}} = \mu C_{\text{\tiny OX}} \frac{W}{2L} \left(V_{\text{\tiny GSQ}} - V_{\text{\tiny T}} \right)^2 \left(1 + \lambda V_{\text{\tiny DSQ}} \right) \cong \mu C_{\text{\tiny OX}} \frac{W}{2L} \left(V_{\text{\tiny GSQ}} - V_{\text{\tiny T}} \right)^2$$

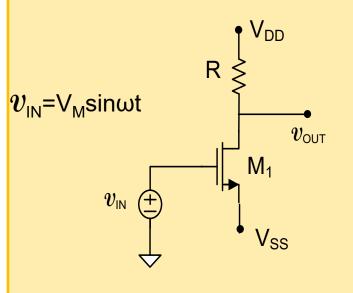
$$g_{m} = \mu C_{ox} \frac{W}{L} (V_{GSQ} - V_{T})$$

$$g_{m} = \sqrt{2\mu C_{ox} \frac{W}{L}} \bullet \sqrt{I_{DQ}}$$

$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}}$$

Consider again:

Small-signal analysis example

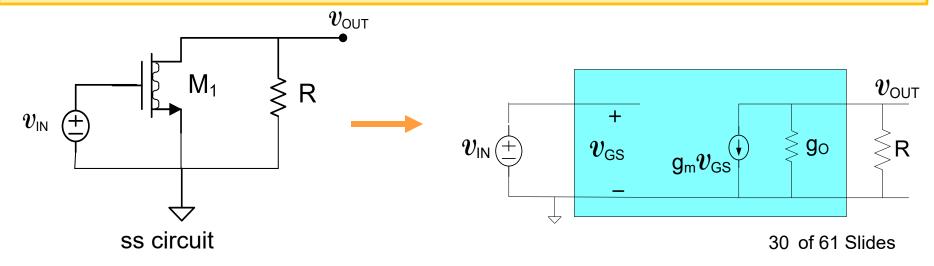


$$A_{_{\text{v}}} = \frac{2I_{_{\text{DQ}}}R}{\left[V_{_{\text{SS}}} + V_{_{\text{T}}}\right]}$$

Derived for $\lambda=0$ (equivalently $g_0=0$)

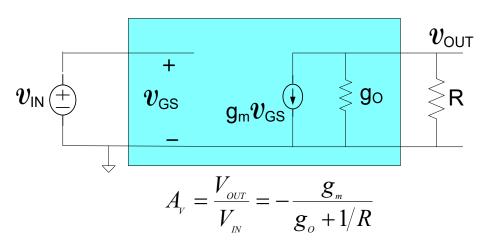
$$I_{D} = \mu C_{OX} \frac{W}{2L} (V_{GS} - V_{T})^{2}$$

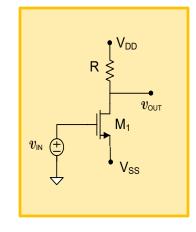
Recall the derivation was very tedious and time consuming!



Consider again:

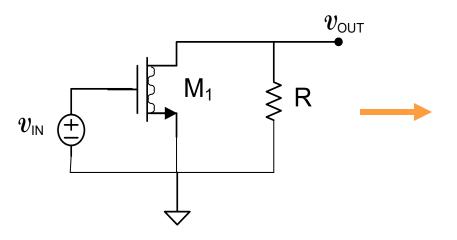
Small-signal analysis example





This gain is expressed in terms of small-signal model parameters

For
$$\lambda=0$$
, $g_O = \lambda I_{DQ} = 0$

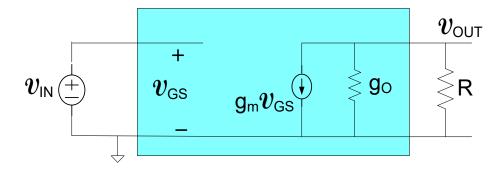


$$A_{V} = \frac{\mathcal{V}_{OUT}}{\mathcal{V}_{IN}} = -g_{m}R$$
but
$$g_{m} = \frac{2I_{DQ}}{V_{GSQ} - V_{T}} \qquad V_{GSQ} = -V_{SS}$$
thus
$$2I \quad R$$

$$A_{v} = \frac{2I_{DQ}R}{\left[V_{SS} + V_{T}\right]}$$
 31 of 61 Slides

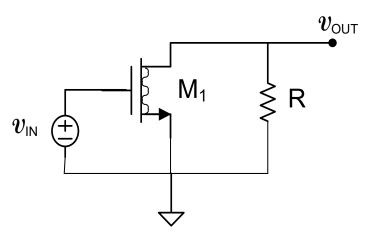
Consider again:

Small-signal analysis example



$$A_{V} = \frac{V_{OUT}}{V_{IN}} = -\frac{g_{m}}{g_{O} + 1/R}$$

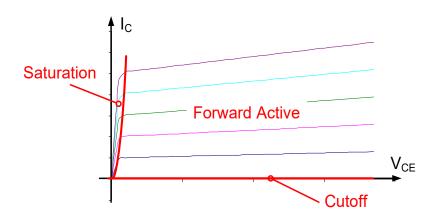
For
$$\lambda=0$$
, $g_O = \lambda I_{DQ} = 0$



$$A_{v} = \frac{2I_{DQ}R}{\left[V_{ss} + V_{T}\right]}$$

- Same expression as derived before!
- More accurate gain can be obtained if
 λ effects are included and does not significantly
 increase complexity of small-signal analysis
 32 of 61 Slides

3-terminal device

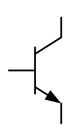


Forward Active Model:

$$\begin{split} & \mathbf{I}_{_{C}} = \mathbf{J}_{_{S}} \mathbf{A}_{_{E}} e^{\frac{V_{_{BE}}}{V_{_{t}}}} \Bigg(1 + \frac{V_{_{CE}}}{V_{_{AF}}} \Bigg) \\ & \mathbf{I}_{_{B}} = \frac{\mathbf{J}_{_{S}} \mathbf{A}_{_{E}}}{\beta} e^{\frac{V_{_{BE}}}{V_{_{t}}}} \end{split}$$

- Usually operated in Forward Active Region when small-signal model is needed
- Will develop small-signal model in Forward Active Region

Nonlinear model:



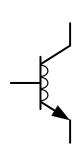
$$\boldsymbol{I}_{\scriptscriptstyle 1} = \boldsymbol{f}_{\scriptscriptstyle 1} \big(\boldsymbol{V}_{\scriptscriptstyle 1}, \boldsymbol{V}_{\scriptscriptstyle 2} \big)$$

$$I_{1} = f_{1}(V_{1}, V_{2}) \qquad \Leftrightarrow \qquad I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

$$I_{2} = f_{2}(V_{1},V_{2})$$

$$\mathbf{I}_{2} = \mathbf{f}_{2} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right) \qquad \qquad \mathbf{I}_{C} = \mathbf{J}_{S} \mathbf{A}_{E} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}} \left(1 + \frac{\mathbf{V}_{CE}}{\mathbf{V}_{AF}} \right)$$

Small-signal model:



$$\mathbf{i}_{\scriptscriptstyle B} = y_{\scriptscriptstyle 11} \mathbf{V}_{\scriptscriptstyle BE} + y_{\scriptscriptstyle 12} \mathbf{V}_{\scriptscriptstyle CE}$$

$$\mathbf{i}_{C} = y_{21} \mathbf{V}_{BE} + y_{22} \mathbf{V}_{CE}$$

$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i} (\mathbf{V}_{1}, \mathbf{V}_{2})}{\partial \mathbf{V}_{j}} \bigg|_{\vec{\nabla} = \vec{\nabla}_{0}}$$
 y-parameter model

$$\mathbf{y}_{11} = \mathbf{g}_{\pi} = \left. \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathrm{BE}}} \right|_{\mathbf{V} - \mathbf{V}_{\mathrm{A}}}$$

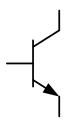
$$\mathbf{y}_{21} = \mathbf{g}_{m} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{BF}} \Big|_{\mathbf{V} = \mathbf{V}.}$$

$$\mathbf{y}_{_{12}} = \left. \frac{\partial \mathbf{I}_{_{\mathrm{B}}}}{\partial \mathbf{V}_{_{\mathrm{CE}}}} \right|_{\mathbf{V} = \mathbf{V}.}$$

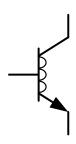
$$\mathbf{y}_{22} = \mathbf{g}_{o} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{ce}}\Big|_{\mathbf{V} = \mathbf{V}}$$

Note: g_m, g_π and g_o used for notational consistency with legacy terminology

Nonlinear model:



Small-signal model:



$$\mathbf{y}_{11} = \mathbf{g}_{\pi} = \left. \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathrm{BE}}} \right|_{\vec{\mathbf{V}} = \vec{\mathbf{V}}_{\mathrm{B}}} = ?$$

$$y_{21} = g_{m} = \frac{\partial I_{c}}{\partial V_{BE}}\Big|_{\vec{V} = \vec{V}_{c}} = ?$$

$$\begin{aligned} \mathbf{I}_{\mathsf{B}} &= \frac{\mathbf{J}_{\mathsf{S}} \mathbf{A}_{\mathsf{E}}}{\mathbf{\beta}} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}} \\ \mathbf{I}_{\mathsf{C}} &= \mathbf{J}_{\mathsf{S}} \mathbf{A}_{\mathsf{E}} \mathbf{e}^{\frac{\mathsf{V}_{\mathsf{BE}}}{\mathsf{V}_{\mathsf{t}}}} \left(1 + \frac{\mathsf{V}_{\mathsf{CE}}}{\mathsf{V}_{\mathsf{AF}}} \right) \end{aligned}$$

$$\mathbf{i}_{B} = y_{11} \mathbf{v}_{BE} + y_{12} \mathbf{v}_{CE}$$

$$\mathbf{i}_{C} = y_{21} \mathbf{v}_{BE} + y_{22} \mathbf{v}_{CE}$$

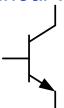
$$\mathbf{y}_{ij} = \frac{\partial \mathbf{f}_{i} \left(\mathbf{V}_{1}, \mathbf{V}_{2} \right)}{\partial \mathbf{V}_{j}} \Big|_{\mathbf{v} = \mathbf{v}_{Q}}$$

$$\mathbf{y}_{12} = \frac{\partial \mathbf{I}_{B}}{\partial \mathbf{V}_{CE}} \Big|_{\mathbf{v} = \mathbf{v}_{Q}}$$

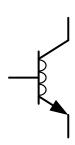
$$= ?$$

$$\mathbf{y}_{22} = \mathbf{g}_{0} = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{CE}}\Big|_{\mathbf{V} = \mathbf{V}_{0}} = \mathbf{?}$$

Nonlinear model



Small-signal model:



$$I_{B} = \frac{J_{S}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

$$I_{C} = J_{S}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 + \frac{V_{CE}}{V_{AF}}\right)$$

$$\mathbf{i}_{B} = y_{11} \mathbf{V}_{BE} + y_{12} \mathbf{V}_{CE}$$

$$\mathbf{i}_{\scriptscriptstyle C} = y_{\scriptscriptstyle 21} \mathbf{V}_{\scriptscriptstyle BE} + y_{\scriptscriptstyle 22} \mathbf{V}_{\scriptscriptstyle CE}$$

$$\mathbf{y}_{\scriptscriptstyle{11}} = \mathbf{g}_{\scriptscriptstyle{\pi}} = \left. \frac{\partial \mathbf{I}_{\scriptscriptstyle{\mathsf{B}}}}{\partial \mathbf{V}_{\scriptscriptstyle{\mathsf{BE}}}} \right|_{\scriptscriptstyle{\bar{\mathbf{V}}} = \bar{\mathbf{V}}_{\scriptscriptstyle{\mathsf{D}}}} = \frac{1}{V} \frac{\mathbf{J}_{\scriptscriptstyle{\mathsf{S}}} \mathbf{A}_{\scriptscriptstyle{\mathsf{E}}}}{\beta} \mathbf{e}^{\frac{\mathbf{V}_{\scriptscriptstyle{\mathsf{BE}}}}{V_{\scriptscriptstyle{\mathsf{t}}}}} \right|_{\scriptscriptstyle{\bar{\mathbf{V}}} = \bar{\mathbf{V}}_{\scriptscriptstyle{\mathsf{D}}}} = \frac{\mathbf{I}_{\scriptscriptstyle{\mathsf{BQ}}}}{\mathsf{V}_{\scriptscriptstyle{\mathsf{t}}}} \cong \frac{\mathbf{I}_{\scriptscriptstyle{\mathsf{CQ}}}}{\beta \mathsf{V}_{\scriptscriptstyle{\mathsf{t}}}}$$

$$\mathbf{y}_{_{12}} = \left. \frac{\partial \mathbf{I}_{_{\mathrm{B}}}}{\partial \mathbf{V}_{_{\mathrm{CE}}}} \right|_{_{\vec{\mathrm{V}} = \vec{\mathrm{V}}_{\mathrm{O}}}} = 0$$

$$\mathbf{y}_{11} = \mathbf{g}_{\pi} = \left. \frac{\partial \mathbf{I}_{\mathrm{B}}}{\partial \mathbf{V}_{\mathrm{BE}}} \right|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\mathrm{Q}}} = \frac{1}{V_{\mathrm{r}}} \frac{\mathbf{J}_{\mathrm{s}} \mathbf{A}_{\mathrm{E}}}{\beta} \mathbf{e}^{\frac{\mathbf{V}_{\mathrm{BE}}}{V_{\mathrm{t}}}} \right|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\mathrm{Q}}} = \frac{\mathbf{I}_{\mathrm{CQ}}}{\beta V_{\mathrm{t}}}$$

$$\mathbf{y}_{21} = \mathbf{g}_{m} = \left. \frac{\partial \mathbf{I}_{\mathrm{C}}}{\partial \mathbf{V}_{\mathrm{BE}}} \right|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\mathrm{Q}}} = \frac{1}{V_{\mathrm{t}}} \mathbf{J}_{\mathrm{s}} \mathbf{A}_{\mathrm{E}} \mathbf{e}^{\frac{\mathbf{V}_{\mathrm{BE}}}{V_{\mathrm{t}}}} \left(1 + \frac{\mathbf{V}_{\mathrm{CE}}}{V_{\mathrm{AF}}} \right) \right|_{\bar{\mathbf{V}} = \bar{\mathbf{V}}_{\mathrm{Q}}} = \frac{\mathbf{I}_{\mathrm{CQ}}}{V_{\mathrm{t}}}$$

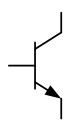
$$\mathbf{y}_{22} = g_o = \frac{\partial \mathbf{I}_{c}}{\partial \mathbf{V}_{ce}} \bigg|_{\vec{\mathbf{V}} = \vec{\mathbf{V}}_{Q}} = \frac{\mathbf{J}_{s} \mathbf{A}_{e} \mathbf{e}^{\frac{\mathbf{V}_{BE}}{\mathbf{V}_{t}}}}{\mathbf{V}_{AF}} \bigg|_{\vec{\mathbf{V}} = \vec{\mathbf{V}}_{Q}} \cong \frac{\mathbf{I}_{cQ}}{\mathbf{V}_{AF}}$$

Note: usually prefer to express in terms of I_{CO}

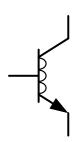
36 of 61 Slides

Forward Active Region Summary

Nonlinear model:



Small-signal model:



$$y_{11} = g_{\pi} \cong \frac{I_{CQ}}{\beta V_{r}}$$

$$y_{12} = 0$$

$$\int_{B} = \frac{J_{s}A_{E}}{\beta}e^{\frac{V_{BE}}{V_{t}}}$$

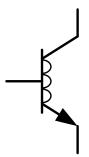
$$I_{c} = J_{s}A_{E}e^{\frac{V_{BE}}{V_{t}}}\left(1 + \frac{V_{CE}}{V_{AF}}\right)$$

$$\mathbf{i}_{B} = y_{11} \mathbf{v}_{BE} + y_{12} \mathbf{v}_{CE}$$

$$\mathbf{i}_{C} = y_{21} \mathbf{v}_{BE} + y_{22} \mathbf{v}_{CE}$$

$$y_{21} = g_m = \frac{I_{CQ}}{V_{\cdot}}$$

$$\mathbf{y}_{22} = \mathbf{g}_o \cong \frac{\mathbf{I}_{CQ}}{\mathbf{V}_{\Delta F}}$$

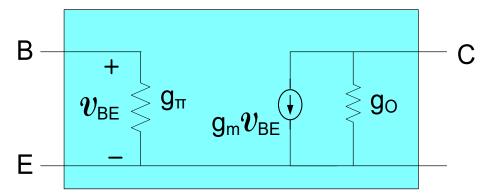


$$g_{\pi} = \frac{I_{CQ}}{\beta V_{+}}$$
 $g_{m} = \frac{I_{CQ}}{V_{+}}$ $g_{o} = \frac{I_{CQ}}{V_{AF}}$

$$g_{\scriptscriptstyle m} = \frac{I_{\scriptscriptstyle CQ}}{V_{\scriptscriptstyle L}}$$

$$g_o = \frac{I_{CQ}}{V_{AF}}$$

$$oldsymbol{i}_{\scriptscriptstyle B} = g_{\scriptscriptstyle \pi} oldsymbol{V}_{\scriptscriptstyle BE} \ oldsymbol{i}_{\scriptscriptstyle C} = g_{\scriptscriptstyle m} oldsymbol{V}_{\scriptscriptstyle BE} + g_{\scriptscriptstyle O} oldsymbol{V}_{\scriptscriptstyle CE}$$

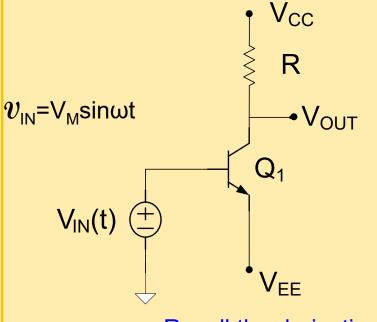


An equivalent circuit

y-parameter model using "g" parameter notation

Consider again:

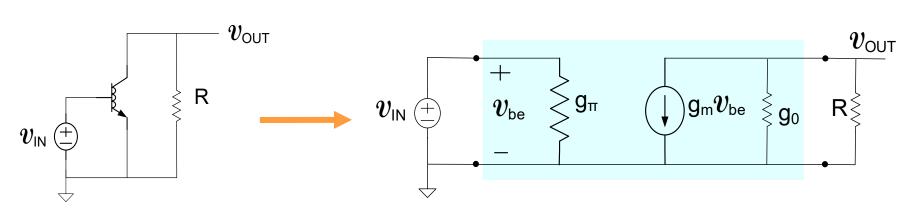
Small signal analysis example



$$A_{VB} = -\frac{I_{CQ}R}{V_{t}}$$

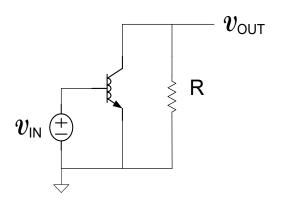
Derived for $V_{AF}=0$ (equivalently $g_o=0$)

Recall the derivation was very tedious and time consuming!

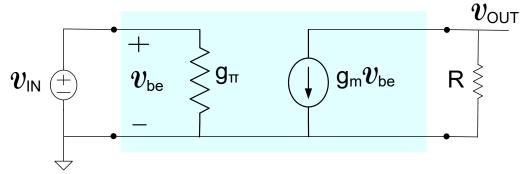


ss circuit

Neglect V_{AF} effects (i.e. $V_{AF}\!=\!\infty)$ to be consistent with earlier analysis



$$g_o = \frac{I_{CQ}}{V_{AF}} = 0$$



$$egin{array}{lll} oldsymbol{v}_{ ext{OUT}} = -g_{ ext{m}} R oldsymbol{v}_{ ext{BE}} \\ oldsymbol{v}_{ ext{IN}} = oldsymbol{v}_{ ext{BE}} \end{array} \qquad \mathbf{A}_{ ext{V}} = oldsymbol{v}_{ ext{OUT}} = -g_{ ext{m}} \mathbf{R}$$

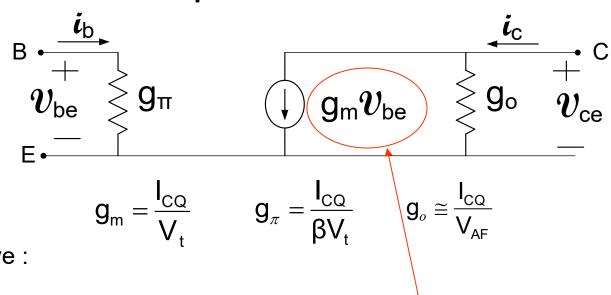
$$A_v = \frac{v_{OUT}}{v_{IN}} = -g_m R$$

$$g_{m} = \frac{I_{CQ}}{V_{t}}$$

$$A_{V} = -\frac{I_{CQ}R}{V_{t}}$$

Note this is identical to what was obtained with the direct nonlinear analysis

Small Signal BJT Model – alternate representation



Observe:

$$g_{\pi} \boldsymbol{\nu}_{be} = \boldsymbol{i}_{b}$$

$$g_{m} \boldsymbol{\nu}_{be} = \boldsymbol{i}_{b} \frac{g_{m}}{g_{\pi}}$$

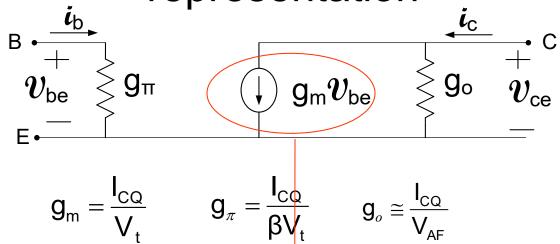
$$\frac{g_{m}}{g_{\pi}} = \frac{\begin{bmatrix} I_{Q} \\ V_{t} \end{bmatrix}}{\begin{bmatrix} I_{Q} \\ SV_{t} \end{bmatrix}} = \beta$$

$$g_{m} \mathbf{v}_{be} = \beta \mathbf{i}_{b}$$

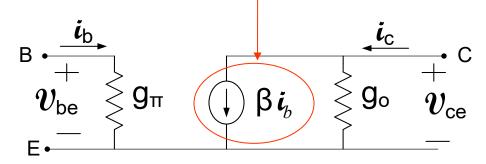
Can replace the voltage dependent current source with a current dependent current source

41 of 61 Slides

Small Signal BJT Model – alternate representation

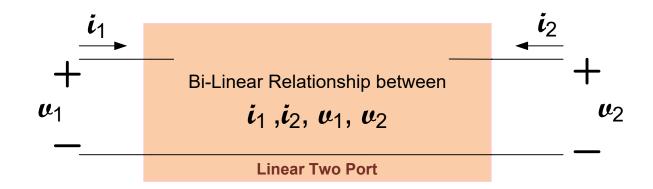


Alternate equivalent small signal model

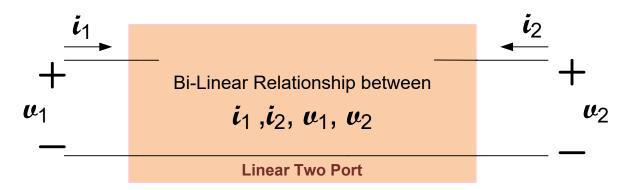


$$g_{\pi} = \frac{I_{CQ}}{\beta V_{t}}$$
 $g_{o} \cong \frac{I_{CQ}}{V_{\Delta E}}$

(3-terminal network – also relevant with 4-terminal networks)

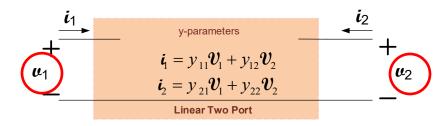


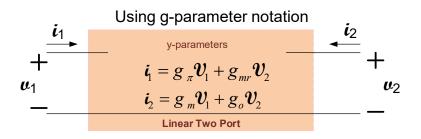
- Have developed small-signal models for the MOSFET and BJT
- Models have been based upon arbitrary assumption that u_1 , u_2 are independent variables
- Models are y-parameter models expressed in terms of "g" parameters
- Have already seen some alternatives for "parameter" definitions in these models
- Additional alternative representations are sometimes used



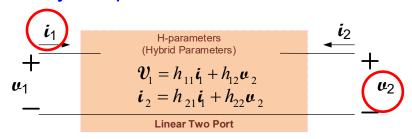
The good, the bad, and the unnecessary!!

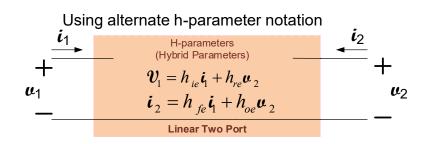
what we have developed:



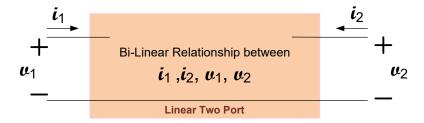


The hybrid parameters:

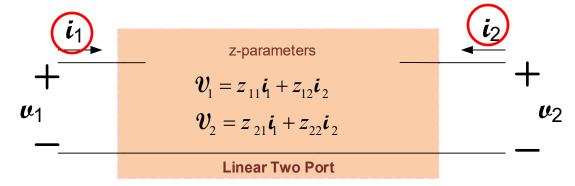




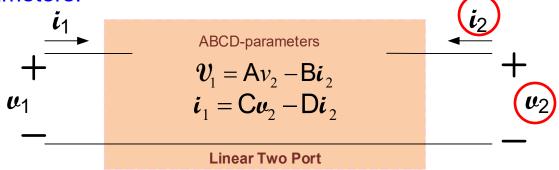
Independent parameters

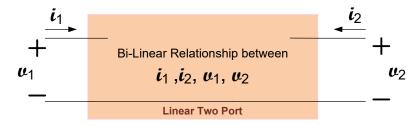


The z-parameters

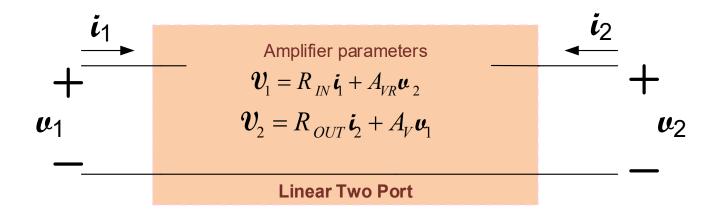


The ABCD parameters:

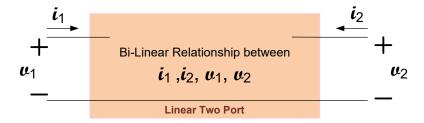




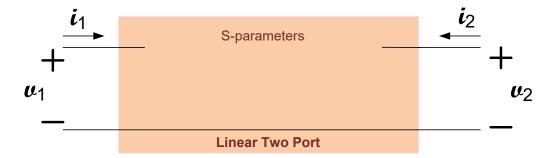
Amplifier parameters



- Alternate two-port characterization but not expressed in terms of independent and dependent parameters
- Widely used notation when designing amplifiers

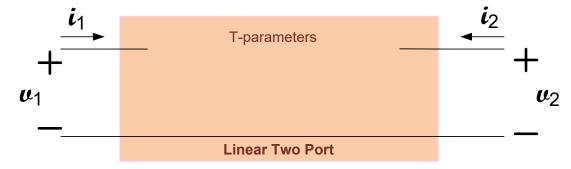


The S-parameters



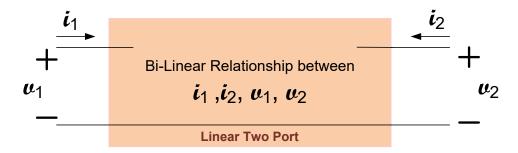
(embedded with source and load impedances)

The T parameters:

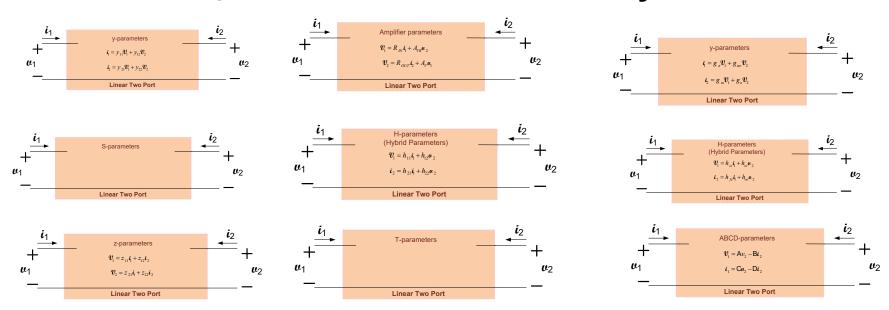


(embedded with source and load impedances)

47 of 61 Slides



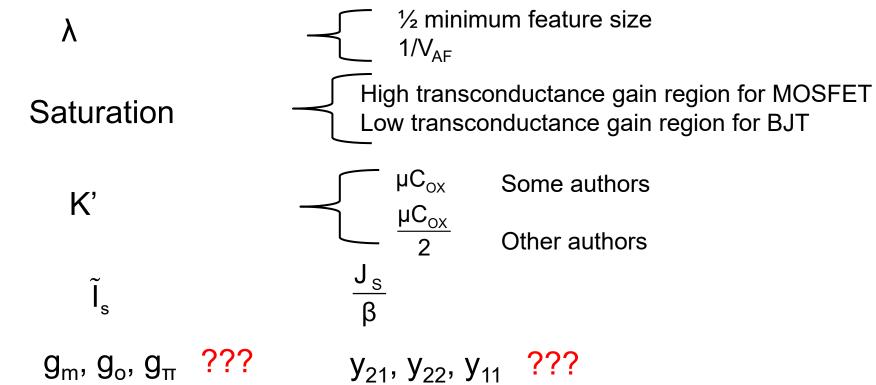
The good, the bad, and the unnecessary!!



- Equivalent circuits often given for each representation
- All provide identical characterization
- Easy to move from any one to another
- 36 different parameters used to characterize a 4-parameter system 48 of 61 Slides

Terminology in Microelectronics

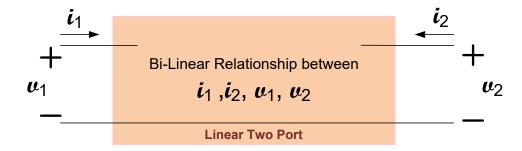
Re-use/Duplication



Disassociation

Dependent Source
Amplifier

Circuits Community
Electronics Community



The good, the bad, and the **unnecessary** !!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between S, **Z**, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

<u>DA Frickey</u> - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org

... equations for **converting between** the various common 2-port parameters, **Z**, Y, h, ABCD, **S**, and T... The validity of these results is shown by first calculating **S** parameters from **Z**, Y, h, and ... \Leftrightarrow Save \mathfrak{M} Cite Cited by 951 Pelated articles All 9 versions

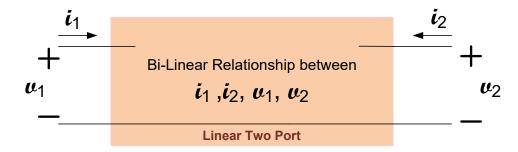
Comments on Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances [with reply]

RB Marks, DF Williams... - IEEE Transactions on ..., 1995 - ieeexplore.ieee.org

- ... formulas for conversions between various network matrices. Four of these matrices (Z, Y, h,
- \dots in [SI) we gave formulas for the **transformation** of the D section with l'Hospital's rule already \dots

☆ Save ワワ Cite Cited by 68 Delated articles All 5 versions

50 of 61 Slides



The good, the bad, and the **unnecessary**!!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA Frickey - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org

... 2. FEBRUARY 1994 TABLE m EQUATIONS FOR THE CONVERSION BETWEEN & PARAMEIERS

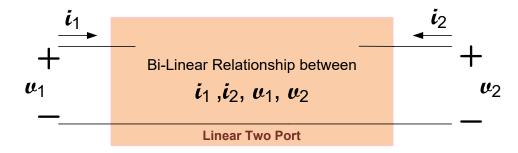
AND NORMALIZED 2, Y, h., V. CONCLUSION This paper developed the equations for C(Comments on Conversions between S, Z, Y, h, ABCD, and T parameters between the various common 2-port parameters, Z, Y, h, ABCD, S, and T ...

DD Cited by 575 Related articles All 7 versions

which are valid for complex source and load impedances"[with reply DF Williams, DA Frickey - IEEE Transactions on ..., 1995 - ieeexplore.ieee.org In his recent paper, Frickey presents formulas for conversions between various network

matrices. Four of these matrices (Z, Y, h, and ABD) relate vertage ports: the other two (S and T) relate wave quantities. These clatter

Related articles All 4 versions



The good, the bad, and the unnecessary !!

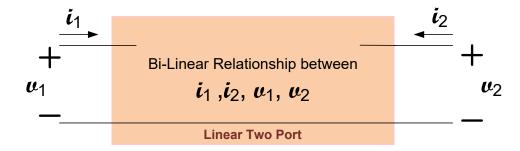
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Conversions **between** S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA Frickey - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org
This paper provides tables which contain the conversion between the various common twoport parameters, Z, Y, H, ABCD, S, and T. The conversions are valid for complex normalizing
impedances. An example is provided which verifies the conversions to and from S

☆ 99 Cited by 370 Related articles All 5 versions
As of Mar 6, 2018



The good, the bad, and the unnecessary !!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

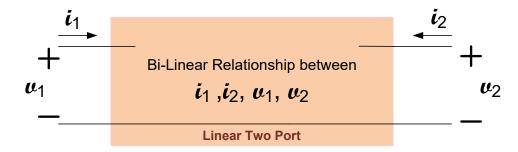
Dean A. Frickey, Member, IEEE

Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA **Frickey** - IEEE Transactions on Microwave Theory and ..., 1994 - osti.gov **Conversions between** S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances This paper provides tables which contain the **conversion between** the various common two-port parameters, Z, Y, h, ABCD, S, and T. The ...

Cited by 226 Related articles All 6 versions Cite Save More

Comments on" Conversions between S, Z, Y, h, ABCD, and T parameters which are valid for complex source and load impedances"[with reply] ..., DF Williams, DA Frickey - Microwave Theory and ..., 1995 - ieeexplore.ieee.org
In his recent paper, Frickey presents formulas for conversions between various network matrices. Four of these matrices (Z, Y, h, and ABCD) relate voltages and currents the production of the conversions between various network matrices. Four of these matrices (Z, Y, h, and ABCD) relate voltages and currents the production of the conversions between various network matrices. Four of these matrices (Z, Y, h, and ABCD) relate voltages and currents the conversions between various network matrices. Four of these matrices (Z, Y, h, and ABCD) relate voltages and currents the conversions between various network matrices. These relationships depend on the conversions between various network matrices. Such as the conversions between various network matrices (Z, Y, h, and ABCD) relate voltages and currents the conversions between various network matrices. These relationships depend on the conversions between various network matrices. The conversions between various network matrices (Z, Y, h, and ABCD) relate voltages and currents the conversions between various network matrices. The conversions between various network matrices (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages and currents (Z, Y, h, and ABCD) relate voltages (Z, Y, h, an



The good, the bad, and the unnecessary !!

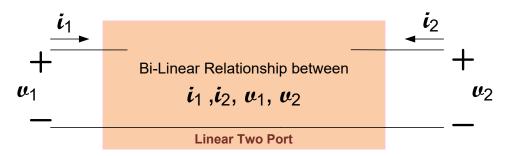
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

DA Frickey - ... theory and techniques, IEEE Transactions on, 1994 - ieeexplore.ieee.org
Abstract This paper provides tables which contain the conversion between the various
common two-port parameters, Z, Y, H, ABCD, S, and T. The conversions are valid for
complex normalizing impedances. An example is provided which verifies the conversions ...
Cited by 149 Plated articles All 5 versions Cite



The good, the bad, and the unnecessary !!

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 42, NO. 2, FEBRUARY 1994

Conversions Between S, Z, Y, h, ABCD, and T Parameters which are Valid for Complex Source and Load Impedances

Dean A. Frickey, Member, IEEE

Conversions between S, **Z**, Y, H, ABCD, and T parameters which are valid for complex source and load impedances

<u>DA Frickey</u> - IEEE Transactions on microwave theory and ..., 1994 - ieeexplore.ieee.org ... equations for **converting between** the various common 2-port parameters, **Z**, Y, h, ABCD, **S**, and T... The validity of these results is shown by first calculating **S** parameters from **Z**, Y, h, and ... ☆ Save 切 Cite Cited by 951 Related articles All 9 versions

This paper is somewhat like a fine vintage wine!

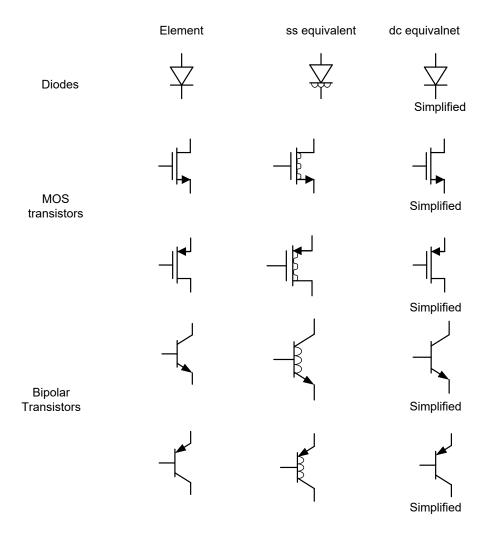
1940 Vino Stravecchio Riserva Casa Vinicola Aretusa

s 579

1975 Chianti Riserva Villa Antinori Volume 1,5 l

IN STOCK \$ 729

Active Device Model Summary

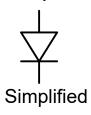


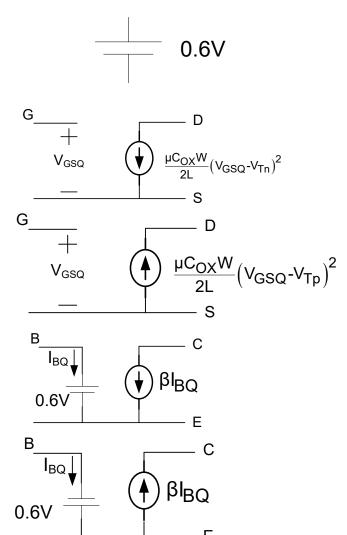
What are the simplified dc equivalent models?

Active Device Model Summary

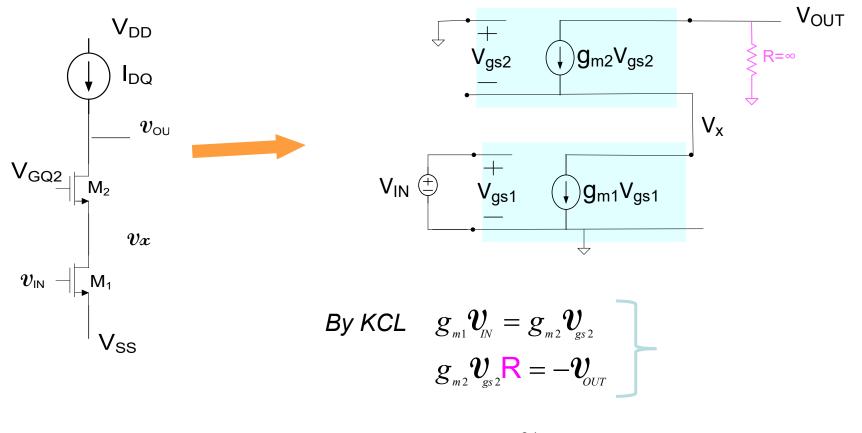
What are the simplified dc equivalent models?

dc equivalent





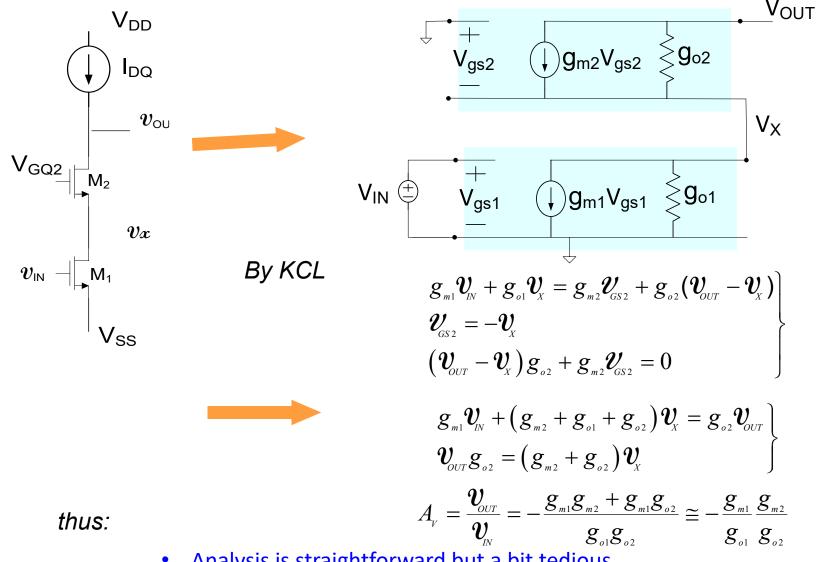
Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that $\lambda=0$



Solving obtain:
$$A_{v} = \frac{\mathbf{v}_{out}}{\mathbf{v}_{v}} = -g_{m1} R \xrightarrow{R=\infty} \infty$$

Unexpectedly large, need better device models!

Example: Determine the small signal voltage gain $A_V = v_{OUT}/v_{IN}$. Assume M_1 and M_2 are operating in the saturation region and that λ≠0



- Analysis is straightforward but a bit tedious
- A_V is very large and would go to ∞ if g_{01} and g_{02} were both 0
- Will look at how big this gain really is later

Stay Safe and Stay Healthy!

